Role of renal medullary adenosine in the control of blood flow and sodium excretion.

نویسندگان

  • Ai-Ping Zou
  • Kasem Nithipatikom
  • Pin-Lan Li
  • Allen W Cowley
چکیده

This study determined the levels of adenosine in the renal medullary interstitium using microdialysis and fluorescence HPLC techniques and examined the role of endogenous adenosine in the control of medullary blood flow and sodium excretion by infusing the specific adenosine receptor antagonists or agonists into the renal medulla of anesthetized Sprague-Dawley rats. Renal cortical and medullary blood flows were measured using laser-Doppler flowmetry. Analysis of microdialyzed samples showed that the adenosine concentration in the renal medullary interstitial dialysate averaged 212 ± 5.2 nM, which was significantly higher than 55.6 ± 5.3 nM in the renal cortex ( n = 9). Renal medullary interstitial infusion of a selective A1antagonist, 8-cyclopentyl-1,3-dipropylxanthine (DPCPX; 300 pmol ⋅ kg-1 ⋅ min-1, n = 8), did not alter renal blood flows, but increased urine flow by 37% and sodium excretion by 42%. In contrast, renal medullary infusion of the selective A2 receptor blocker 3,7-dimethyl-1-propargylxanthine (DMPX; 150 pmol ⋅ kg-1 ⋅ min-1, n = 9) decreased outer medullary blood flow (OMBF) by 28%, inner medullary blood flows (IMBF) by 21%, and sodium excretion by 35%. Renal medullary interstitial infusion of adenosine produced a dose-dependent increase in OMBF, IMBF, urine flow, and sodium excretion at doses from 3 to 300 pmol ⋅ kg-1 ⋅ min-1( n = 7). These effects of adenosine were markedly attenuated by the pretreatment of DMPX, but unaltered by DPCPX. Infusion of a selective A3receptor agonist, N 6-benzyl-5'-( N-ethylcarbonxamido)adenosine (300 pmol ⋅ kg-1 ⋅ min-1, n = 6) into the renal medulla had no effect on medullary blood flows or renal function. Glomerular filtration rate and arterial pressure were not changed by medullary infusion of any drugs. Our results indicate that endogenous medullary adenosine at physiological concentrations serves to dilate medullary vessels via A2 receptors, resulting in a natriuretic response that overrides the tubular A1 receptor-mediated antinatriuretic effects.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of nitric oxide in renal papillary blood flow and sodium excretion.

Renal medullary interstitial infusion of NG-nitro-L-arginine (120 micrograms/hr, n = 7) decreased papillary blood flow to 71 +/- 5% of control without altering outer cortical flow. Before NG-nitro-L-arginine infusion, interstitial acetylcholine administration (200 micrograms/hr) increased cortical and papillary blood flow to 134 +/- 6% and 113 +/- 2% of control, respectively. After NG-nitro-L-a...

متن کامل

Importance of the renal medullary circulation in the control of sodium excretion and blood pressure.

The control of renal medullary perfusion and the impact of alterations in medullary blood flow on renal function have been topics of research interest for almost four decades. Many studies have examined the vascular architecture of the renal medulla, the factors that regulate renal medullary blood flow, and the influence of medullary perfusion on sodium and water excretion and arterial pressure...

متن کامل

Renal Fractional Excretion of Sodium in Relation to Arterial Blood Gas and Spirometric Parameters in Chronic Obstructive Pulmonary Disease

Introduction: Arterial gas derangement could change urinary sodium excretion in Chronic Obstructive Pulmonary Disease (COPD) patients.There are very few and conflicting data in regards to the measurement of fractional excretion of sodium in COPD patients. The main aim of this study was to assess the relationship between renal fractional excretion of sodium(FeNa) with arterial blood gas and spir...

متن کامل

Kinin actions on renal papillary blood flow and sodium excretion.

Infusion of bradykinin into the renal medullary interstitium (0.1 micrograms/min, n = 6) significantly increased renal papillary blood flow as measured by laser-Doppler flowmetry to 117 +/- 3% of control without altering cortical blood flow or blood pressure in anesthetized Munich-Wistar rats. In animals prepared for clearance studies, renal medullary bradykinin infusion did not alter total ren...

متن کامل

The Role of Nitric Oxide and Prostaglandins in the Effect of Adenosine on Contractility, Heart Rate and Coronary Blood Flow in Guinea Pig Isolated Heart

It is a well-established fact that adenosine and its receptor subtypes (A 1 and A ) are involved in changes of contractility, heart rate and coronary blood flow (CBF) under different circumstances. This study was conducted to evaluate the role of nitric oxide and prostaglandins in development of these changes. For this purpose, Nitro-L-Arginine methyl ester (L-NAME), and indomethacin as inhibit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Regulatory, integrative and comparative physiology

دوره 276 3  شماره 

صفحات  -

تاریخ انتشار 1999